
Roadmap

Stable storage

External memory
algorithms and
data structures

Implementing
relational
operators

Introduction to
query optimization

Parallel
dataflow

Algorithms for
MapReduce

Implementing
concurrency

Implementing
resilience –
coping with

system failures

Handling large amount of data efficiently

Stable storage: how stable?

Stable storage

External memory
algorithms and
data structures

Implementing
relational
operators

Introduction to
query optimization

Parallel
dataflow

Algorithms for
MapReduce

Implementing
concurrency

Implementing
resilience –
coping with

system failures

Handling large amount of data efficiently

Coping with disk failures

Lecture 01.02

By Marina Barsky
Winter 2017, University of Toronto

Disks fail in different ways

• Intermittent failure – the data transfer failed, but the disk
data are not corrupted

• Disk crash – the entire disk becomes unreadable, suddenly
and permanently

Intermittent Failures

• How do we know that the read/write failed?

• Disk sectors store some redundant bits that can be used to
tell us if an I/O operation was successful

• For writes, we simply re-read the sector and check the
status bits

Checksums for failure detection

• Status validation is performed with checksum

• One or more bits that, with high probability, verify the
correctness of the operation

• The checksum is written by the disk controller

Parity bit

• A simple form of checksum is the parity bit:

• Add one bit per sector so that the number of 1’s in the
sector data + the parity bit is even

• A disk read (per sector) would return status “good” if the
bit string has an even number of 1’s; otherwise, status =
bad

Odd parity – 1bit error

If the total sequence of bits, including the parity bit, contains
an odd number of 1s – disk controller reports an error

11101110 0

Good

11101010 0

Bad

2-bit errors

• If more than 1 bit is corrupted, the probability that even parity
will be preserved is 50%.

• For example, if two bits were changed, say, the first erroneous bit
was 1 and became 0, the probability that the second erroneous
bit was also 1 and become 0 is 50%.

• An error will go undetected in 50% of cases!

Why?

11101110 0

Good

10101010 0

Good?

• Let’s have 8 parity bits – one for each corresponding bit of
data bytes

01110110

11001101

00001111

10110100

Using several parity bits

Data bytes

8 parity bits

Several parity bits solve the
problem

01110110

11001101

00001111

10110100

• The probability that a single parity bit will not detect an
error is 1/2. The chance that none of 8 bits will detect an
error is 1/28 = 1/256

• With n parity bits, the probability of undetected error = 1/2n

• If we devote 4 bytes (32 bits) to a checksum of a disk block,
the probability of undetected error is ~1/4,000,000,000.

Data bytes

8 parity bits

Disk failure types

• Intermittent failure

• Disk crash – the entire disk becomes unreadable, suddenly
and permanently

Disk failure and data loss

• Mean time to failure (MTTF) = when 50% of the disks have
crashed, typically 10 years

• Simplified (assuming this happens linearly) computation

• In the 1st year = 5% disks fail,

• In the 2nd year = 5%,

• …

• In the 20th year = 5%

• However the mean time to a disk crash doesn’t have to be
the same as the mean time to data loss; there are solutions.

Redundant Array of Independent
Disks, RAID
• Mirror each disk (data disk/redundant disk)

• If data disk fails, restore using the mirror

RAID 1 solution

• Mirror each one data disk with one redundant disk

Assume:
• 5% failure per year; MTTF = 10 years (for disks).
• 3 hours to replace and restore failed disk.

If a failure to one disk occurs, then the other better not fail in the
next three hours

• Probability of failure during replacement = 5% 3/(24  365) =
1/58,400.

• If half disks fail every 10 years, then one of two will fail every 5
years

• One in 58,400 of those failures results in data loss; MTTF =
5*58,400 = 292,000 years.

RAID 1

• Mirror each data disk with one redundant disk

• Drawback: We need one redundant disk for each data disk.

RAID 4 solution

• n data disks & 1 redundant disk (for any n)

Modulo-2 sum

• We’ll refer to the expression xy as modulo-2 sum of x and
y (XOR)

E.g. 11110000  10101010 = 01011010

Input
Output

A B

0 0 0

0 1 1

1 0 1

1 1 0

Output is 1 when
A and B differ

Properties of XOR: 

• As a useful consequence, if xy=z, then we can “add” x to
both sides and get y=xz

• More generally, if

0 = x1...xn

Then “adding” xi to both sides, we get:

xi = x1…xi-1 xi+1...xn

• Commutativity: xy = yx
• Associativity: x(yz) = (xy)z
• Identity: x0 = 0x = x (0 is vector 0000…)
• Self-inverse: xx = 0

RAID 4 solution

• n data disks & 1 redundant disk (for any n)

• Each block in the redundant disk has the modulo-2 sum for
the corresponding blocks in the other disks.
i th Block of Disk 1: 11110000
i th Block of Disk 2: 10101010
i th Block of Disk 3: 00111000
i th Block of red. disk: 01100010

The redundant disk adjusts modulo-2

sum of all corresponding bits to 0

00000000

Failure recovery in RAID 4

We must be able to restore whatever disk crashes.

• Just compute the modulo2 sum of corresponding blocks of
all the other disks (including redundant)

• Use equation to restore each block of failed disk

rednjjj xxxxxx   111

RAID 4 recovery example

• Disk 1 crashes – recover it

i th Block of Disk 1: --------
i th Block of Disk 2: 10101010
i th Block of Disk 3: 00111000
i th Block of red. disk: 01100010

00000000

RAID 4 recovery example

• Recovered disk 1

i th Block of Disk 1: 11110000
i th Block of Disk 2: 10101010
i th Block of Disk 3: 00111000
i th Block of red. disk: 01100010

00000000

RAID 4: reading opportunity

• Interesting possibility: If we want to read from disk i, but it
is busy and all other disks are free, then instead we can read
the corresponding blocks from all other disks and modulo2
sum them.

RAID 4: writing challenge

• Writing:

• Write data block

• Update redundant block

• Naively: Read all n corresponding blocks

n+1 disk I/O’s:

n-1 blocks read,

1 data block write,

1 redundant block write.

• Better: How?

RAID 4: writing

• Better Writing: To write block i of data disk 1 (new value v):

• Read old value of that block o.

• Read the ith block of the redundant disk with value r.

• Compute w = v  o  r.

• Write v in block i of disk 1.

• Write w in block i of the redundant disk.

• Total: 4 disk I/O; (true for any number of data disks)

• Why does this work?

• Intuition: v  o is the “change” to the overall parity

• Redundant disk must change accordingly to compensate.

RAID 4 writing example

i th Block of Disk1: 11110000
i th Block of Disk 2: 10101010
i th Block of Disk 3: 00111000
i th Block of red disk: 01100010

Suppose we change 10101010 into 01101110

10101010
01101110
01100010

10100110

Re-computing by using all 3 disks:
11110000
01101110
00111000

10100110

RAID 5: solves writing bottleneck

• In RAID 4: the redundant disk is involved in every write 
Bottleneck!

• Solution: RAID 5 - vary the redundant disk for different
blocks.

• If we have n disks, then block j of disk i serves as
redundant if i = j%n

• In this way, all blocks of each disk are used for data, except
some that are used for parity bits of the rest of the disks

• For example, in disk 2 in RAID of 10 disks, the blocks 2, 12,
22 etc. are used for storing parity bits for all the other disks

RAID 5 example

• In practice, not blocks but entire cylinders are used for redundancy

• Example: n=4. So, there are 4 disks.

• First disk numbered 0, would serve as “redundant” when
considering cylinders numbered: 0, 4, 8, 12 etc. (because they
leave reminder 0 when divided by 4).

• Disk numbered 1, would be “redundant” for cylinders numbered:
1, 5, 9, etc.

Cylinder 2

Cylinder 3

Parity 0

Cylinder 1

Disk 0

Parity 4

Cylinder 2

Cylinder 3

Cylinder 0

Parity 1

Disk 1

Cylinder 4

Parity 2

Cylinder 3

Cylinder 0

Cylinder 1

Disk 2

Cylinder 4

Cylinder 2

Parity 3

Cylinder 0

Cylinder 1

Disk 3

Cylinder 4

RAID 6: Coping with multiple disk
crashes
• There is a theory of error-correcting codes that allows us to

deal with any number of disk crashes – if we use enough
redundant disks

• We look how two simultaneous crashes can be recoverable
based on the simplest error-correcting code, known as a
Hamming code

RAID 6 - for multiple disk crashes

• 7 disks, numbered 1 through 7

• The first 4 are data disks, and disks 5 through 7 are redundant.

• The relationship between data and redundant disks is summarized by a
3 x 7 matrix of 0's and 1's

1 2 3 4 5 6 7

1 1 1 0 1 0 0

1 1 0 1 0 1 0

1 0 1 1 0 0 1

5 – first redundant,
6 – second redundant,
7 – third redundant

The 1s in row i of data
disks tell that the parity
for these disks is in a
redundant disk i

Each data disk has at least 2 associated
redundant disks

There are no two equal participation columns
for two different data disks

RAID 6 - example

1) 11110000

2) 10101010

3) 00111000

4) 01000001

5) 01100010

6) 00011011

7) 10001001

disk 5 is modulo 2 sum of disks 1,2,3

disk 6 is modulo 2 sum of disks 1,2,4

disk 7 is modulo 2 sum of disks 1,3,4

1 2 3 4 5 6 7

1 1 1 0 1 0 0

1 1 0 1 0 1 0

1 0 1 1 0 0 1

RAID 6 - example

disk 5 is modulo 2 sum of disks 1,2,3

disk 6 is modulo 2 sum of disks 1,2,4

disk 7 is modulo 2 sum of disks 1,3,4

1 2 3 4 5 6 7

1 1 1 0 1 0 0

1 1 0 1 0 1 0

1 0 1 1 0 0 1

1) 11110000

2) 10101010

3) 00111000

4) 01000001

5) 01100010

6) 00011011

7) 10001001

RAID 6 - example

disk 5 is modulo 2 sum of disks 1,2,3

disk 6 is modulo 2 sum of disks 1,2,4

disk 7 is modulo 2 sum of disks 1,3,4

1 2 3 4 5 6 7

1 1 1 0 1 0 0

1 1 0 1 0 1 0

1 0 1 1 0 0 1

1) 11110000

2) 10101010

3) 00111000

4) 01000001

5) 01100010

6) 00011011

7) 10001001

RAID 6 Recovery

Why is it possible to recover from two disk crashes?

• Let the failed disks be a and b.

• Since all columns of the redundancy matrix are different, we must be
able to find some row r in which the columns for a and b are different.

• Suppose that a has 0 in row r, while b has 1 there.

• Then we can compute the correct b by taking the modulo-2 sum of
corresponding bits from all the disks other than b that have 1 in row r.

• Note that a is not among these, so none of them have failed.

• Having done so, we can recompute a, with all other disks available.

1 2 3 4 5 6 7

1 1 1 0 1 0 0

1 1 0 1 0 1 0

1 0 1 1 0 0 1

RAID 6 – How many redundant
disks?
• The total number of disks can be one less than any power of 2, say 2k –

1.

• Of these disks, k are redundant, and the remaining 2k– 1– k are data
disks, so the redundancy grows roughly as the logarithm of the number
of data disks.

• For any k, we can construct the redundancy matrix by writing all
possible columns of k 0's and 1's, except the all-0's column.

• The columns with a single 1 correspond to the redundant disks, and
the columns with more than one 1 are the data disks.

Note finally that we can combine RAID 6 with RAID 5 to reduce
the performance bottleneck on the redundant disks

Exercises

RAID 4

i th Block of Disk 1: 11110000

i th Block of Disk 2: 10101010

i th Block of Disk 3: 00111000

i th Block of Disk 3: 11111011

i th Block of red. disk:

RAID 4

i th Block of Disk 1: 11110000

i th Block of Disk 2: 10101010

i th Block of Disk 3: 00111000

i th Block of Disk 3: 11111011

i th Block of red. disk: 10011001

RAID 4

i th Block of Disk 1: --------

i th Block of Disk 2: 10101010

i th Block of Disk 3: 00111000

i th Block of Disk 3: 11111011

i th Block of red. disk: 10011001

Now suppose that Disk 1 crashed. Recover it.

RAID 4

i th Block of Disk 1: 11110000

i th Block of Disk 2: 10101010

i th Block of Disk 3: 00111000

i th Block of Disk 3: 11111011

i th Block of red. disk: 10011001

Now suppose that Disk 1 crashed. Recover it.

RAID 5

Disk 1: 1111000001

Disk 2: 1010101011

Disk 3: 0011100000

Disk 4: 1111101101

Disk 5: 1001100111

The red bits are used for redundancy

(This is toy example. In practice we talk in

terms of cylinders)

RAID 5

Disk 1: ----------

Disk 2: 1010101011

Disk 3: 0011100000

Disk 4: 1111101101

Disk 5: 1001100111

The red bits are used for redundancy

(This is toy example. In practice we talk in
terms of cylinders)

Now suppose that Disk 1 crashed. Recover it.

RAID 5

Disk 1: --11000001

Disk 2: 1010101011

Disk 3: 0011100000

Disk 4: 1111101101

Disk 5: 1001100111

The red bits are used for redundancy

(This is toy example. In practice we talk in
terms of cylinders)

Now suppose that Disk 1 crashed. Recover it.

RAID 5

Disk 1: 1111000001

Disk 2: 1010101011

Disk 3: 0011100000

Disk 4: 1111101101

Disk 5: 1001100111

The red bits are used for redundancy

(This is toy example. In practice we talk in
terms of cylinders)

Now suppose that Disk 1 crashed. Recover it.

RAID 6

1 2 3 4 5 6 7

1 1 1 0 1 0 0

1 1 0 1 0 1 0

1 0 1 1 0 0 1

1) 11110000

2) 10101010

3) 00111000

4) 01000001

5) 01100010

6) 00011011

7) 10001001

RAID 6

Now suppose that Disk 2 and Disk 5 crash. Recover them.

1 2 3 4 5 6 7

1 1 1 0 1 0 0

1 1 0 1 0 1 0

1 0 1 1 0 0 1

1) 11110000

2) --------

3) 00111000

4) 01000001

5) --------

6) 00011011

7) 10001001

RAID 6

Now suppose that Disk 2 and Disk 5 crash. Recover them.

1 2 3 4 5 6 7

1 1 1 0 1 0 0

1 1 0 1 0 1 0

1 0 1 1 0 0 1

1) 11110000

2) 10101010

3) 00111000

4) 01000001

5) --------

6) 00011011

7) 10001001

We find the row with 1 for disk 2 and 0 for disk 5
We can recover disk 2 using redundant disk 6 which is the parity for disks 1,2,4

RAID 6

Now suppose that Disk 2 and Disk 5 crash. Recover them.

1 2 3 4 5 6 7

1 1 1 0 1 0 0

1 1 0 1 0 1 0

1 0 1 1 0 0 1

1) 11110000

2) 10101010

3) 00111000

4) 01000001

5) 00100010

6) 00011011

7) 10001001

We know that disk 5 is a parity disk for data disks 1,2,3. All their values are
known, so we recover disk 5

RAID 6

Now suppose that Disk 2 and Disk 4 crash. Recover them.

1 2 3 4 5 6 7

1 1 1 0 1 0 0

1 1 0 1 0 1 0

1 0 1 1 0 0 1

1) 11110000

2) --------

3) 00111000

4) --------

5) 01100010

6) 00011011

7) 10001001

Another Version of RAID 6

• RAID 6 based on Reed-Solomon codes
(1997).

• The damage protection method can be
briefly explained via these two
mathematical expressions:

P = D1 + D2 + D3 + D4

Q = 1*D1 + 2*D2 + 3*D3 + 4*D4

• If any two of P, Q, D1, D2, D3 and D4
become unknown (or lost), then solve the
system of equations for 2 unknowns.

• In fact, we don’t really multiply by 1,2,3,4
but by g, g^2, g^3, g^4, where g is a
Galois field generator.

