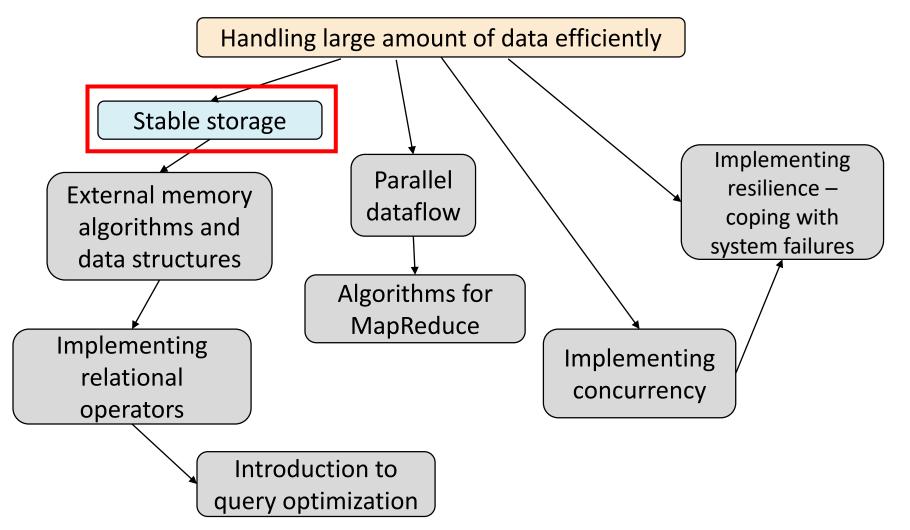


Stable storage: how stable?



Lecture 01.02

Coping with disk failures

By Marina Barsky Winter 2017, University of Toronto

Disks fail in different ways

- Intermittent failure the data transfer failed, but the disk data are not corrupted
 - Disk crash the entire disk becomes unreadable, suddenly and permanently

Intermittent Failures

- How do we know that the read/write failed?
- Disk sectors store some redundant bits that can be used to tell us if an I/O operation was successful
- For writes, we simply re-read the sector and check the status bits

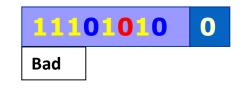
Checksums for failure detection

- Status validation is performed with *checksum*
 - One or more bits that, with high probability, verify the correctness of the operation
 - The checksum is written by the disk controller

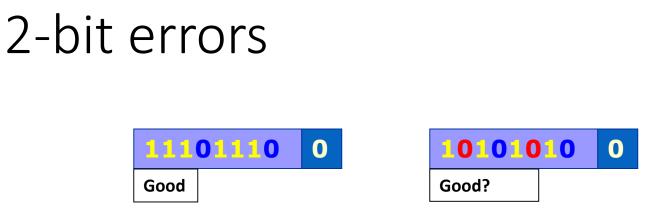
Parity bit

- A simple form of checksum is the *parity bit*:
 - Add one bit per sector so that the number of 1's in the sector data + the parity bit is even
 - A disk read (per sector) would return status "good" if the bit string has an even number of 1's; otherwise, status = bad

Odd parity – 1bit error



If the total sequence of bits, including the parity bit, contains an odd number of 1s – disk controller reports an error



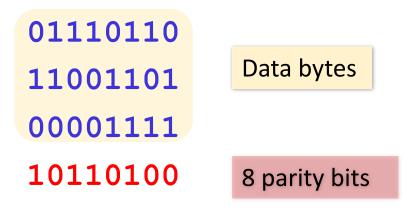
• If more than 1 bit is corrupted, the probability that even parity will be preserved is 50%.

Why?

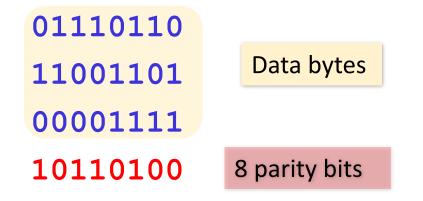
- For example, if two bits were changed, say, the first erroneous bit was 1 and became 0, the probability that the second erroneous bit was also 1 and become 0 is 50%.
- An error will go undetected in 50% of cases!

Using several parity bits

 Let's have 8 parity bits – one for each corresponding bit of data bytes



Several parity bits solve the problem



- The probability that a single parity bit will not detect an error is 1/2. The chance that none of 8 bits will detect an error is 1/2⁸ = 1/256
- With *n* parity bits, the probability of undetected error = 1/2^{*n*}
- If we devote 4 bytes (32 bits) to a checksum of a disk block, the probability of undetected error is ~1/4,000,000,000.

Disk failure types

- Intermittent failure
- Disk crash the entire disk becomes unreadable, suddenly and permanently

Disk failure and data loss

- Mean time to failure (MTTF) = when 50% of the disks have crashed, typically 10 years
- Simplified (assuming this happens linearly) computation
 - In the 1st year = 5% disks fail,
 - In the 2nd year = 5%,
 - ...
 - In the 20^{th} year = 5%
- However the mean time to a **disk crash doesn't** have to be the same as the mean time to **data loss**; *there are solutions*.

Redundant Array of Independent Disks, RAID

- Mirror each disk (*data disk/redundant* disk)
- If data disk fails, restore using the mirror

RAID 1 solution

• Mirror each one data disk with one redundant disk

Assume:

- 5% failure per year; MTTF = 10 years (for disks).
- 3 hours to replace and restore failed disk.
- If a failure to one disk occurs, then the other better not fail in the next three hours
- Probability of failure during replacement = 5% ×3/(24 × 365) = 1/58,400.
- If half disks fail every 10 years, then one of two will fail every 5 years
- One in 58,400 of those failures results in data loss; MTTF = 5*58,400 = 292,000 years.

RAID 1

- Mirror each data disk with one redundant disk
- Drawback: We need one redundant disk for each data disk.

RAID 4 solution

• *n* data disks & 1 redundant disk (for any *n*)

Modulo-2 sum

We'll refer to the expression x⊕y as modulo-2 sum of x and y (XOR)

E.g. $1110000 \oplus 10101010 = 01011010$

Inj	Output		
А	В	Output	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

Output is 1 when A and B differ

Properties of XOR: \oplus

- Commutativity: x⊕y = y⊕x
- Associativity: $\mathbf{x} \oplus (\mathbf{y} \oplus \mathbf{z}) = (\mathbf{x} \oplus \mathbf{y}) \oplus \mathbf{z}$
- *Identity*: **x**⊕**0** = **0**⊕**x** = **x** (**0** is vector 0000...)
- *Self-inverse*: **x**⊕**x** = **0**
- As a useful consequence, if x⊕y=z, then we can "add" x to both sides and get y=x⊕z
- More generally, if

 $\mathbf{0} = \mathbf{x}_1 \oplus ... \oplus \mathbf{x}_n$

Then "adding" x_i to both sides, we get:

 $\mathbf{x}_{i} = \mathbf{x}_{1} \oplus \dots \mathbf{x}_{i-1} \oplus \mathbf{x}_{i+1} \oplus \dots \oplus \mathbf{x}_{n}$

RAID 4 solution

- *n* data disks & **1** redundant disk (for any *n*)
- Each block in the redundant disk has the **modulo-2 sum** for the corresponding blocks in the other disks.

<i>i</i> th Block of Disk 1:	11110000
<i>i</i> th Block of <mark>Disk 2</mark> : <i>i</i> th Block of <mark>Disk 3</mark> :	10101010 00 111 000
<i>i</i> th Block of red. disk:	01100010

00000000

The redundant disk adjusts modulo-2 sum of all corresponding bits to 0

Failure recovery in RAID 4

We must be able to restore whatever disk crashes.

- Just compute the modulo2 sum of corresponding blocks of all the other disks (including redundant)
- Use equation to restore each block of failed disk

 $x_{j} = x_{1} \oplus \dots x_{j-1} \oplus x_{j+1} \oplus \dots \oplus x_{n} \oplus x_{red}$

RAID 4 recovery example

- Disk 1 crashes recover it
 - i th Block of Disk 1:
 i th Block of Disk 2:
 i th Block of Disk 3:
 i th Block of red. disk:

```
10101010
00111000
01100010
```

00000000

RAID 4 recovery example

- Recovered disk 1
 - i th Block of Disk 1:
 i th Block of Disk 2:
 i th Block of Disk 3:
 i th Block of red. disk:

```
\begin{array}{c} 11110000\\ 10101010\\ 00111000\\ 01100010 \end{array}
```

00000000

RAID 4: reading opportunity

• Interesting possibility: If we want to read from disk *i*, but it is busy and all other disks are free, then instead we can read the corresponding blocks from all other disks and modulo2 sum them.

RAID 4: writing challenge

• Writing:

- Write data block
- Update redundant block
- Naively: Read all *n* corresponding blocks

n+1 disk I/O's:

n-1 blocks read,

1 data block write,

1 redundant block write.

• Better: How?

RAID 4: writing

- **Better Writing**: To write block *i* of data disk 1 (new value v):
 - Read old value of that block o.
 - Read the *i*th block of the redundant disk with value **r**.
 - Compute $\mathbf{w} = \mathbf{v} \oplus \mathbf{o} \oplus \mathbf{r}$.
 - Write **v** in block *i* of disk 1.
 - Write **w** in block *i* of the redundant disk.
- Total: 4 disk I/O; (true for any number of data disks)
- Why does this work?
 - Intuition: $\mathbf{v} \oplus \mathbf{o}$ is the "change" to the overall parity
 - *Redundant disk* must change accordingly to compensate.

RAID 4 writing example

i th Block of Disk1: *i* th Block of Disk 2: *i* th Block of Disk 3: *i* th Block of *red* disk:

11110000 *10101010* 00111000 0**11**00010

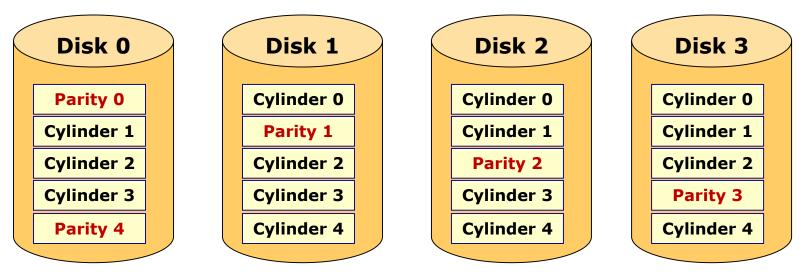
Suppose we change **10101010** into **01101110**

RAID 5: solves writing bottleneck

- In RAID 4: the redundant disk is involved in every write → Bottleneck!
- Solution: RAID 5 vary the redundant disk for different blocks.
 - If we have *n* disks, then block *j* of disk *i* serves as redundant if *i* = *j%n*
- In this way, all blocks of each disk are used for data, except some that are used for parity bits of the rest of the disks
- For example, in disk 2 in RAID of 10 disks, the blocks 2, 12, 22 etc. are used for storing parity bits for all the other disks

RAID 5 example

- In practice, not blocks but entire cylinders are used for redundancy
- Example: n=4. So, there are 4 disks.
 - First disk numbered 0, would serve as "redundant" when considering cylinders numbered: 0, 4, 8, 12 etc. (because they leave reminder 0 when divided by 4).
 - Disk numbered 1, would be "redundant" for cylinders numbered: 1, 5, 9, etc.

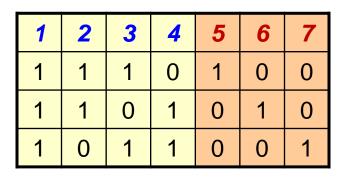


RAID 6: Coping with multiple disk crashes

- There is a theory of error-correcting codes that allows us to deal with any number of disk crashes – if we use enough redundant disks
- We look how two simultaneous crashes can be recoverable based on the simplest error-correcting code, known as a *Hamming code*

RAID 6 - for multiple disk crashes

- 7 disks, numbered 1 through 7
- The first 4 are data disks, and disks 5 through 7 are redundant.
- The relationship between data and redundant disks is summarized by a 3 x 7 matrix of 0's and 1's



- 5 first redundant,
- 6 second redundant,
- 7 third redundant

The 1s in row *i* of data disks tell that the parity for these disks is in a redundant disk *i*

Each data disk has at least 2 associated redundant disks

There are no two equal participation columns for two different data disks

RAID 6 - example

- 1) **1111**0000
- 2) 10101010
- 3) 00**111**000
- 4) 0100001
- 5) 01100010
 6) 00011011
 7) 10001001

disk **5** is modulo 2 sum of disks 1,2,3 disk 6 is modulo 2 sum of disks 1,2,4 disk 7 is modulo 2 sum of disks 1,3,4

1	2	3	4	5	6	7
1	1	1	0	1	0	0
1	1	0	1	0	1	0
1	0	1	1	0	0	1

RAID 6 - example

- 1) **1111**0000
- 2) 10101010
- 3) 00111000
- 4) 0**1**00000**1**
- 5) 01100010
 6) 000**11**0**11**7) 10001001

disk 5 is modulo 2 sum of disks 1,2,3 disk 6 is modulo 2 sum of disks 1,2,4 disk 7 is modulo 2 sum of disks 1,3,4

1	2	3	4	5	6	7
1	1	1	0	1	0	0
1	1	0	1	0	1	0
1	0	1	1	0	0	1

RAID 6 - example

- 11110000 1)
- 2) 10101010
- 3) 00111000
- 01000001 4)
- 01100010 5) 00011011 6)
- 7) 10001001

disk 5 is modulo 2 sum of disks 1,2,3 disk 6 is modulo 2 sum of disks 1,2,4 disk 7 is modulo 2 sum of disks 1,3,4

1	2	3	4	5	6	7
1	1	1	0	1	0	0
1	1	0	1	0	1	0
1	0	1	1	0	0	1

1	2	3	4	5	6	7
1	1	1	0	1	0	0
 1	1	0	1	0	1	0
1	0	1	1	0	0	1

Why is it possible to recover from two disk crashes?

• Let the failed disks be *a* and *b*.

RAID 6 Recovery

- Since all columns of the redundancy matrix are different, we must be able to find some row *r* in which the columns for *a* and *b* are different.
 - Suppose that *a* has 0 in row *r*, while *b* has 1 there.
- Then we can compute the correct *b* by taking the modulo-2 sum of corresponding bits from all the disks other than *b* that have 1 in row *r*.
 - Note that *a* is not among these, so none of them have failed.
- Having done so, we can recompute *a*, with all other disks available.

RAID 6 – How many redundant disks?

- The total number of disks can be one less than any power of 2, say 2^k –
 1.
- Of these disks, k are redundant, and the remaining 2^k-1-k are data disks, so the redundancy grows roughly as the logarithm of the number of data disks.
- For any *k*, we can construct the redundancy matrix by writing all possible columns of *k* 0's and 1's, except the all-0's column.
 - The columns with a single 1 correspond to the redundant disks, and the columns with more than one 1 are the data disks.

Note finally that we can combine RAID 6 with RAID 5 to reduce the performance bottleneck on the redundant disks

Exercises

- i th Block of Disk 1:
- i th Block of Disk 2:
- i th Block of Disk 3:
- i th Block of Disk 3: 11111011
- *i* th Block of red. disk:

- 11110000
 - 10101010
- 00111000

i	th	Block	of	Disk	1:	11110000
i	th	Block	of	Disk	2:	10101010
i	th	Block	of	Disk	3:	00111000
i	th	Block	of	Disk	3:	11111011
i	th	Block	of	red.	disk:	10011001

i	th	Block	of	Disk	1:	
i	th	Block	of	Disk	2:	10101010
i	th	Block	of	Disk	3:	00111000
i	th	Block	of	Disk	3:	11111011
i	th	Block	of	red.	disk:	10011001

i	th	Block	of	Disk	1:	11110000
i	th	Block	of	Disk	2:	10101010
i	th	Block	of	Disk	3:	00111000
i	th	Block	of	Disk	3:	11111011
i	th	Block	of	red.	disk:	10011001

- Disk 1: 1111000001
- Disk 2: 1010101011
- Disk 3: 0011100000
- Disk 4: 1111101101
- Disk 5: 1001100111

The red bits are used for redundancy (This is toy example. In practice we talk in terms of cylinders)

Disk	1:	
Disk	2:	1010101011
Disk	3:	0011100000
Disk	4:	111110 <mark>11</mark> 01
Disk	5:	1001100111

The red bits are used for redundancy (This is toy example. In practice we talk in terms of cylinders)

Disk 1:	1100001
Disk 2:	1010101011
Disk 3:	0011100000
Disk 4:	111110 <mark>11</mark> 01
Disk 5:	1001100111

The red bits are used for redundancy (This is toy example. In practice we talk in terms of cylinders)

Disk	1:	11 11000001
Disk	2:	1010101011
Disk	3:	0011100000
Disk	4:	1111101101
Disk	5:	1001100111

The red bits are used for redundancy (This is toy example. In practice we talk in terms of cylinders)

- 1) 11110000
- 2) 10101010
- 3) 00111000
- 4) 0100001
- 5) 01100010
- 6) 00011011
- 7) 10001001

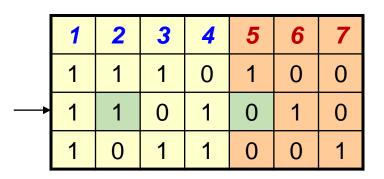
1	2	3	4	5	6	7
1	1	1	0	1	0	0
1	1	0	1	0	1	0
1	0	1	1	0	0	1

- 1) 11110000 2) -----
- 3) 00111000
- 4) 0100001
- 5) -----
- 6) 00011011
 7) 10001001

1	2	3	4	5	6	7
1	1	1	0	1	0	0
1	1	0	1	0	1	0
1	0	1	1	0	0	1

Now suppose that Disk 2 and Disk 5 crash. Recover them.

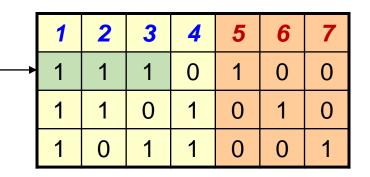
- 1) **1111**0000
- 2) **10101010**
- 3) 00111000
- 4) 0**1**00000**1**
- 5) -----
- 6) 000**11**0**11**
- 7) 10001001



Now suppose that Disk 2 and Disk 5 crash. Recover them.

We find the row with 1 for disk 2 and 0 for disk 5 We can recover disk 2 using redundant disk 6 which is the parity for disks 1,2,4

- 1) **1111**0000
- 2) **1010101**0
- 3) 00**111**000
- 4) 0100001
- 5) **00100010**
- 6) 00011011
- 7) 10001001



Now suppose that Disk 2 and Disk 5 crash. Recover them.

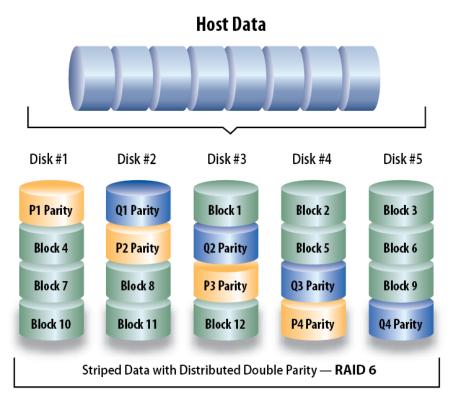
We know that disk 5 is a parity disk for data disks 1,2,3. All their values are known, so we recover disk 5

- 1) 11110000
- 2) -----
- 3) 00111000
- 4) -----
- 5) 01100010
- 6) 00011011
- 7) 10001001

1	2	3	4	5	6	7
1	1	1	0	1	0	0
1	1	0	1	0	1	0
 1	0	1	1	0	0	1

Now suppose that Disk 2 and Disk 4 crash. Recover them.

Another Version of RAID 6



- RAID 6 based on Reed-Solomon codes (1997).
- The damage protection method can be briefly explained via these two mathematical expressions:

P = D1 + D2 + D3 + D4Q = 1*D1 + 2*D2 + 3*D3 + 4*D4

- If any two of P, Q, D1, D2, D3 and D4 become unknown (or lost), then solve the system of equations for 2 unknowns.
- In fact, we don't really multiply by 1,2,3,4 but by g, g^2, g^3, g^4, where g is a Galois field generator.