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Disks fail in different ways

• Intermittent failure – the data transfer failed, but the disk 
data are not corrupted 

• Disk crash – the entire disk becomes unreadable, suddenly 
and permanently



Intermittent Failures

• How do we know that the read/write failed?

• Disk sectors store some redundant bits that can be used to 
tell us if an I/O operation was successful

• For writes, we simply re-read the sector and check the 
status bits



Checksums for failure detection

• Status validation is performed with checksum

• One or more bits that, with high probability, verify the 
correctness of the operation

• The checksum is written by the disk controller



Parity bit

• A simple form of checksum is the parity bit:

• Add one bit per sector so that the number of 1’s in the 
sector data + the parity bit is even

• A disk read (per sector) would return status “good” if the 
bit string has an even number of 1’s; otherwise, status = 
bad



Odd parity – 1bit error

If the total sequence of bits, including the parity bit,  contains 
an odd number of 1s – disk controller reports an error

11101110 0 

Good

11101010 0 

Bad



2-bit errors

• If more than 1 bit is corrupted, the probability that even parity 
will be preserved is 50%.

• For example, if two bits were changed, say, the first erroneous bit 
was 1 and became 0, the probability that the second erroneous 
bit was also 1 and become 0 is 50%.

• An error will go undetected in 50% of cases!

Why?

11101110 0 

Good

10101010 0 

Good?



• Let’s have 8 parity bits – one for each corresponding bit of 
data bytes

01110110

11001101

00001111

10110100

Using several parity bits

Data bytes

8 parity bits



Several parity bits solve the 
problem

01110110

11001101

00001111

10110100

• The probability that a single parity bit will not detect an 
error is 1/2. The chance that none of 8 bits will detect an 
error is 1/28 = 1/256

• With n parity bits, the probability of undetected error = 1/2n

• If we devote 4 bytes (32 bits) to a checksum of a disk block, 
the probability of undetected error is ~1/4,000,000,000.

Data bytes

8 parity bits



Disk failure types

• Intermittent failure 

• Disk crash – the entire disk becomes unreadable, suddenly 
and permanently



Disk failure and data loss

• Mean time to failure (MTTF) = when 50% of the disks have 
crashed, typically 10 years

• Simplified (assuming this happens linearly) computation

• In the 1st year =  5% disks fail,

• In the 2nd year = 5%,

• …

• In the 20th year = 5% 

• However the mean time to a disk crash doesn’t have to be 
the same as the mean time to data loss; there are solutions.



Redundant Array of Independent 
Disks, RAID
• Mirror each disk (data disk/redundant disk)

• If data disk fails, restore using the mirror



RAID 1 solution

• Mirror each one data disk with one redundant disk

Assume: 
• 5% failure per year; MTTF = 10 years (for disks). 
• 3 hours to replace and restore failed disk. 

If a failure to one disk occurs, then the other better not fail in the 
next three hours

• Probability of failure during replacement = 5% 3/(24  365) = 
1/58,400. 

• If half disks fail every 10 years, then one of two will fail every 5 
years 

• One in 58,400 of those failures results in data loss; MTTF = 
5*58,400 = 292,000 years. 



RAID 1

• Mirror each data disk with one redundant disk

• Drawback: We need one redundant disk for each data disk.



RAID 4 solution

• n data disks & 1 redundant disk (for any n)



Modulo-2 sum

• We’ll refer to the expression xy as modulo-2 sum of x and 
y (XOR)

E.g. 11110000  10101010 = 01011010

Input
Output

A B

0 0 0

0 1 1

1 0 1

1 1 0

Output is 1 when 
A and B differ



Properties of XOR: 

• As a useful consequence, if xy=z, then we can “add” x to 
both sides and get y=xz

• More generally, if 

0 = x1...xn

Then “adding” xi to both sides, we get:

xi = x1…xi-1 xi+1...xn

• Commutativity: xy = yx
• Associativity: x(yz) = (xy)z
• Identity: x0 = 0x = x (0 is vector 0000…)
• Self-inverse: xx = 0



RAID 4 solution

• n data disks & 1 redundant disk (for any n)

• Each block in the redundant disk has the modulo-2 sum for 
the corresponding blocks in the other disks.
i th Block of Disk 1:      11110000
i th Block of Disk 2:      10101010
i th Block of Disk 3:      00111000
i th Block of red. disk:   01100010

The redundant disk adjusts modulo-2 

sum of all corresponding bits to 0

00000000



Failure recovery in RAID 4

We must be able to restore whatever disk crashes. 

• Just compute the modulo2 sum of corresponding blocks of 
all the other disks (including redundant)

• Use equation to restore each block of failed disk

rednjjj xxxxxx   ...... 111



RAID 4 recovery example

• Disk 1 crashes – recover it

i th Block of Disk 1: --------
i th Block of Disk 2:      10101010
i th Block of Disk 3:      00111000
i th Block of red. disk:   01100010

00000000



RAID 4 recovery example

• Recovered disk 1

i th Block of Disk 1: 11110000
i th Block of Disk 2:      10101010
i th Block of Disk 3:      00111000
i th Block of red. disk:   01100010

00000000



RAID 4: reading opportunity

• Interesting possibility: If we want to read from disk i, but it 
is busy and all other disks are free, then instead we can read 
the corresponding blocks from all other disks and modulo2 
sum them.



RAID 4: writing challenge

• Writing: 

• Write data block 

• Update redundant block  

• Naively: Read all n corresponding blocks

n+1 disk I/O’s:

n-1 blocks read, 

1 data block write, 

1 redundant block write.

• Better: How?



RAID 4: writing

• Better Writing: To write block i of data disk 1 (new value v): 

• Read old value of that block o. 

• Read the ith block of the redundant disk with value r.

• Compute w = v  o  r. 

• Write v in block i of disk 1. 

• Write w in block i of the redundant disk. 

• Total:  4 disk I/O; (true for any number of data disks)

• Why does this work? 

• Intuition: v  o is the “change” to the overall parity 

• Redundant disk must change accordingly to compensate. 



RAID 4 writing example

i th Block of Disk1:     11110000
i th Block of Disk 2:    10101010
i th Block of Disk 3:    00111000
i th Block of red disk:  01100010

Suppose we change 10101010 into 01101110

10101010
01101110
01100010
---------------
10100110

Re-computing by using all 3 disks:
11110000
01101110
00111000
-------------
10100110



RAID 5: solves writing bottleneck

• In RAID 4: the redundant disk is involved in every write 
Bottleneck!

• Solution: RAID 5 - vary the redundant disk for different 
blocks. 

• If we have n disks, then block j of disk i serves as 
redundant if i = j%n

• In this way, all blocks of each disk are used for data, except 
some that are used for parity bits of the rest of the disks

• For example, in disk 2 in RAID of 10 disks, the blocks 2, 12, 
22 etc. are used for storing parity bits for all the other disks



RAID 5 example

• In practice, not blocks but entire cylinders are used for redundancy

• Example: n=4. So, there are 4 disks. 

• First disk numbered 0, would serve as “redundant” when 
considering cylinders numbered: 0, 4, 8, 12 etc. (because they 
leave reminder 0 when divided by 4).

• Disk numbered 1, would be “redundant” for cylinders numbered: 
1, 5, 9, etc.

Cylinder 2

Cylinder 3

Parity 0

Cylinder 1

Disk 0

Parity 4

Cylinder 2

Cylinder 3

Cylinder 0

Parity 1

Disk 1

Cylinder 4

Parity 2

Cylinder 3

Cylinder 0

Cylinder 1

Disk 2

Cylinder 4

Cylinder 2

Parity 3

Cylinder 0

Cylinder 1

Disk 3

Cylinder 4



RAID 6: Coping with multiple disk 
crashes
• There is a theory of error-correcting codes that allows us to 

deal with any number of disk crashes – if we use enough 
redundant disks

• We look how two simultaneous crashes can be recoverable 
based on the simplest error-correcting code, known as a 
Hamming code



RAID 6 - for multiple disk crashes

• 7 disks, numbered 1 through 7

• The first 4 are data disks, and disks 5 through 7 are redundant.

• The relationship between data and redundant disks is summarized by a 
3 x 7 matrix of 0's and 1's

1 2 3 4 5 6 7

1 1 1 0 1 0 0

1 1 0 1 0 1 0

1 0 1 1 0 0 1

5 – first redundant, 
6 – second redundant, 
7 – third redundant

The 1s in row i of data 
disks tell that the parity 
for these disks is in a 
redundant disk i

Each data disk has at least 2 associated 
redundant disks

There are no two equal participation columns 
for two different data disks



RAID 6 - example

1) 11110000

2) 10101010

3) 00111000

4) 01000001

5) 01100010

6) 00011011

7) 10001001

disk 5 is modulo 2 sum of disks 1,2,3

disk 6 is modulo 2 sum of disks 1,2,4

disk 7 is modulo 2 sum of disks 1,3,4

1 2 3 4 5 6 7

1 1 1 0 1 0 0

1 1 0 1 0 1 0

1 0 1 1 0 0 1



RAID 6 - example

disk 5 is modulo 2 sum of disks 1,2,3

disk 6 is modulo 2 sum of disks 1,2,4

disk 7 is modulo 2 sum of disks 1,3,4

1 2 3 4 5 6 7

1 1 1 0 1 0 0

1 1 0 1 0 1 0

1 0 1 1 0 0 1

1) 11110000

2) 10101010

3) 00111000

4) 01000001

5) 01100010

6) 00011011

7) 10001001



RAID 6 - example

disk 5 is modulo 2 sum of disks 1,2,3

disk 6 is modulo 2 sum of disks 1,2,4

disk 7 is modulo 2 sum of disks 1,3,4

1 2 3 4 5 6 7

1 1 1 0 1 0 0

1 1 0 1 0 1 0

1 0 1 1 0 0 1

1) 11110000

2) 10101010

3) 00111000

4) 01000001

5) 01100010

6) 00011011

7) 10001001



RAID 6 Recovery

Why is it possible to recover from two disk crashes?

• Let the failed disks be a and b.

• Since all columns of the redundancy matrix are different, we must be 
able to find some row r in which the columns for a and b are different. 

• Suppose that a has 0 in row r, while b has 1 there.

• Then we can compute the correct b by taking the modulo-2 sum of 
corresponding bits from all the disks other than b that have 1 in row r. 

• Note that a is not among these, so none of them have failed. 

• Having done so, we can recompute a, with all other disks available.

1 2 3 4 5 6 7

1 1 1 0 1 0 0

1 1 0 1 0 1 0

1 0 1 1 0 0 1



RAID 6 – How many redundant 
disks?
• The total number of disks can be one less than any power of 2, say 2k –

1. 

• Of these disks, k are redundant, and the remaining 2k– 1– k are data 
disks, so the redundancy grows roughly as the logarithm of the number 
of data disks. 

• For any k, we can construct the redundancy matrix by writing all 
possible columns of k 0's and 1's, except the all-0's column. 

• The columns with a single 1 correspond to the redundant disks, and 
the columns with more than one 1 are the data disks.

Note finally that we can combine RAID 6 with RAID 5 to reduce 
the performance bottleneck on the redundant disks



Exercises



RAID 4

i th Block of Disk 1:      11110000

i th Block of Disk 2:      10101010

i th Block of Disk 3:      00111000

i th Block of Disk 3:      11111011

i th Block of red. disk:



RAID 4

i th Block of Disk 1:      11110000

i th Block of Disk 2:      10101010

i th Block of Disk 3:      00111000

i th Block of Disk 3:      11111011

i th Block of red. disk: 10011001



RAID 4

i th Block of Disk 1:      --------

i th Block of Disk 2:      10101010

i th Block of Disk 3:      00111000

i th Block of Disk 3:      11111011

i th Block of red. disk: 10011001

Now suppose that Disk 1 crashed. Recover it. 



RAID 4

i th Block of Disk 1:      11110000

i th Block of Disk 2:      10101010

i th Block of Disk 3:      00111000

i th Block of Disk 3:      11111011

i th Block of red. disk: 10011001

Now suppose that Disk 1 crashed. Recover it. 



RAID 5

Disk 1:      1111000001

Disk 2:      1010101011

Disk 3:      0011100000

Disk 4:      1111101101

Disk 5:   1001100111

The red bits are used for redundancy

(This is toy example. In practice we talk in 

terms of cylinders)



RAID 5

Disk 1:      ----------

Disk 2:      1010101011

Disk 3:      0011100000

Disk 4:      1111101101

Disk 5:   1001100111

The red bits are used for redundancy

(This is toy example. In practice we talk in 
terms of cylinders)

Now suppose that Disk 1 crashed. Recover it. 



RAID 5

Disk 1:      --11000001

Disk 2:      1010101011

Disk 3:      0011100000

Disk 4:      1111101101

Disk 5:   1001100111

The red bits are used for redundancy

(This is toy example. In practice we talk in 
terms of cylinders)

Now suppose that Disk 1 crashed. Recover it. 



RAID 5

Disk 1:      1111000001

Disk 2:      1010101011

Disk 3:      0011100000

Disk 4:      1111101101

Disk 5:   1001100111

The red bits are used for redundancy

(This is toy example. In practice we talk in 
terms of cylinders)

Now suppose that Disk 1 crashed. Recover it. 



RAID 6

1 2 3 4 5 6 7

1 1 1 0 1 0 0

1 1 0 1 0 1 0

1 0 1 1 0 0 1

1) 11110000

2) 10101010

3) 00111000

4) 01000001

5) 01100010

6) 00011011

7) 10001001



RAID 6

Now suppose that Disk 2 and Disk 5 crash. Recover them.

1 2 3 4 5 6 7

1 1 1 0 1 0 0

1 1 0 1 0 1 0

1 0 1 1 0 0 1

1) 11110000

2) --------

3) 00111000

4) 01000001

5) --------

6) 00011011

7) 10001001



RAID 6

Now suppose that Disk 2 and Disk 5 crash. Recover them.

1 2 3 4 5 6 7

1 1 1 0 1 0 0

1 1 0 1 0 1 0

1 0 1 1 0 0 1

1) 11110000

2) 10101010

3) 00111000

4) 01000001

5) --------

6) 00011011

7) 10001001

We find the row with 1 for disk 2 and 0 for disk 5
We can recover disk 2 using redundant disk 6 which is the parity for disks 1,2,4 



RAID 6

Now suppose that Disk 2 and Disk 5 crash. Recover them.

1 2 3 4 5 6 7

1 1 1 0 1 0 0

1 1 0 1 0 1 0

1 0 1 1 0 0 1

1) 11110000

2) 10101010

3) 00111000

4) 01000001

5) 00100010

6) 00011011

7) 10001001

We know that disk 5 is a parity disk for data disks 1,2,3. All their values are 
known, so we recover disk 5 



RAID 6

Now suppose that Disk 2 and Disk 4 crash. Recover them.

1 2 3 4 5 6 7

1 1 1 0 1 0 0

1 1 0 1 0 1 0

1 0 1 1 0 0 1

1) 11110000

2) --------

3) 00111000

4) --------

5) 01100010

6) 00011011

7) 10001001



Another Version of RAID 6

• RAID 6 based on Reed-Solomon codes 
(1997). 

• The damage protection method can be 
briefly explained via these two 
mathematical expressions:

P = D1 + D2 + D3 + D4

Q = 1*D1 + 2*D2 + 3*D3 + 4*D4

• If any two of P, Q, D1, D2, D3 and D4 
become unknown (or lost), then solve the 
system of equations for 2 unknowns.

• In fact, we don’t really multiply by 1,2,3,4 
but by g, g^2, g^3, g^4, where g is a 
Galois field generator. 


